

An instrument for double mirror alignment at ESRF

O.Hignette, Y.Dabin, L.Eybert, N.Levet

ESRF 6 rue Jules Horowitz BP 220 38043 Grenoble Cedex 09 FRANCE

OUTLINE

- Requirements and specifications
- Principles
- Instrument description
- Test results
- Benefits
- Perspectives

Requirements and specifications

Requirement

5 UPBL's horizontally reflecting double mirrors systems Need for parallelism and gap set up in clean room and on beamlines

Specifications

- Parallelism accuracy 20 μrd; gap 30 μm
- Metrology accuracy: parallelism 10 μrd; gap 10 μm
- Incidence angle range: 2 mrd- 1.05 °; gap 1mm 35 mm

Perceived Present Shortcomings

- Accuracy of Survey Group instruments too limited
- 3D Mechanical metrology set up difficult
- On line Beamline check up with clean conditions impossible

Solution

Design of a dedicated optoelectronics instrument

Principles I

Incidence angle set up: angle metrology with telescope

Principles II

Horizontal plane parallelism set up: angle sensing with telescope

The twice reflected beam is focused on the same location as the direct beam

Principles III

Parallelism set up : Vertical plane parallelism ψ

Cancelling the vertical shift by Relative mirrors tilt

Principles IV

Gap set up : position metrology without Telescope

When G > 9 mm ==> camera translation with linear scale metrology

Instrument description

Granite / Survey group references / X-Ray Referencing (<100 µrd)

Instrument description Switchings

Kinematic support autocollimator placement

Instrument description Switchings

full beam / dual slit beam / single slits beam

Kinematic slits support

Polarization encoded slits

Double slit

After 2 meters Propagation

Choice of slit width (blue coherent beam)

$$\Phi \cong \sqrt{\frac{4\lambda L}{\pi}}$$

 λ = 0.46 µm L=2.5m Φ =0.9 mm

Instrument description

Emitter

Receiver

Instrument description

Sequences

- Receiver angular alignment to X-Ray (granite)
- Emitter angular alignment/receiver with large beam
- First mirror angle set up
- Second mirror parallel to first one (alternating single slits)
- Gap linear alignment (dual slit)

Test results

Double mirror system (500+300 mm)

Gap 1.6 mm incidence angle 3 mrd

Distance emitter receiver: 2.5 m

Limited by turbulences:
May be improved by averaging

Benefits

Systems with all motorized Degrees of Freedom
Limits fine rotation stroke and bellows stroke
Limits X-ray beamtime needed for alignment

Systems with partially motorized Degrees of Freedom
Limits strokes . Allows for non motorized degrees of freedom
Stiffness gain

The instrument may (??) allow for non motorized systems

Stiffness gain and reliability benefits

Perspectives

- Ready to be used in November 2012
- The User interface is being tested
- The Instrument is qualified within specifications
- Usable in the mechanical lab and on beamlines